Mapping the Ligand Binding Sites of Kainate Receptors: Molecular Determinants of Subunit-Selective Binding of the Antagonist [H]UBP310
نویسندگان
چکیده
Kainate receptors (KARs) modulate synaptic transmission and plasticity, and their dysfunction has been linked to several disease states such as epilepsy and chronic pain. KARs are tetramers formed from five different subunits. GluK1–3 are low affinity kainate binding subunits, whereas GluK4/5 bind kainate with high affinity. A number of these subunits can be present in any given cell type, and different combinations of subunits confer different properties to KARs. Here we report the characterization of a new GluK1 subunit-selective radiolabeled antagonist (S)-1-(2-amino-2carboxyethyl)-3-(2-carboxythiophene-3-yl-methyl)-5-methylpyrimidine-2,4-dione ([H]UBP310) using human recombinant KARs. [H]UBP310 binds to GluK1 with low nanomolar affinity (KD 21 7 nM) but shows no specific binding to GluK2. However, [H]UBP310 also binds to GluK3 (KD 0.65 0.19 M) but with 30-fold lower affinity than that observed for GluK1. Competition [H]UBP310 binding experiments on GluK1 revealed the same rank order of affinity of known GluK1-selective ligands as reported previously in functional assays. Nonconserved residues in GluK1–3 adjudged in modeling studies to be important in determining the GluK1 selectivity of UBP310 were point-mutated to switch residues between subunits. None of the mutations altered the expression or trafficking of KAR subunits. Whereas GluK1T503A mutation diminished [H]UBP310 binding, GluK2-A487T mutation rescued it. Likewise, whereas GluK1-N705S/S706N mutation decreased, GluK3-N691S mutation increased [H]UBP310 binding activity. These data show that Ala487 in GluK2 and Asn691 in GluK3 are important determinants in reducing the affinity of UBP310 for these subunits. Insights from these modeling and point mutation studies will aid the development of new subunit-selective KAR antagonists.
منابع مشابه
Mapping the ligand binding sites of kainate receptors: molecular determinants of subunit-selective binding of the antagonist [3H]UBP310.
Kainate receptors (KARs) modulate synaptic transmission and plasticity, and their dysfunction has been linked to several disease states such as epilepsy and chronic pain. KARs are tetramers formed from five different subunits. GluK1-3 are low affinity kainate binding subunits, whereas GluK4/5 bind kainate with high affinity. A number of these subunits can be present in any given cell type, and ...
متن کاملCrystal structures of the kainate receptor GluR5 ligand binding core dimer with novel GluR5-selective antagonists.
Glutamate receptor (GluR) ion channels mediate fast synaptic transmission in the mammalian CNS. Numerous crystallographic studies, the majority on the GluR2-subtype AMPA receptor, have revealed the structural basis for binding of subtype-specific agonists. In contrast, because there are far fewer antagonist-bound structures, the mechanisms for antagonist binding are much less well understood, p...
متن کاملNovel Small Molecules against Two Binding Sites of Wnt2 Protein as potential Drug Candidates for Colorectal Cancer: A Structure Based Virtual Screening Approach
Wnts are the major ligands responsible for activating Wnt signaling pathway through binding to Frizzled proteins (Fzd) as the receptors. Among these ligands, Wnt2 plays the main role in the tumorigenesis of several human cancers especially colorectal cancer (CRC). Therefore, it can be considered as a potential drug target.The aim of this study was to identify potential drug candidates ...
متن کاملNovel Small Molecules against Two Binding Sites of Wnt2 Protein as potential Drug Candidates for Colorectal Cancer: A Structure Based Virtual Screening Approach
Wnts are the major ligands responsible for activating Wnt signaling pathway through binding to Frizzled proteins (Fzd) as the receptors. Among these ligands, Wnt2 plays the main role in the tumorigenesis of several human cancers especially colorectal cancer (CRC). Therefore, it can be considered as a potential drug target.The aim of this study was to identify potential drug candidates ...
متن کاملDetermination of binding site residues responsible for the subunit selectivity of novel marine-derived compounds on kainate receptors.
Dysiherbaine (DH) and related molecules are high-affinity, subunit-selective kainate receptor (KAR) ligands originally isolated from a marine sponge. To elucidate why DH, an agonist, and MSVIII-19, a competitive antagonist, bind selectively to glutamate receptor (GluR) 5 but not to the KA2 KAR subunit, we used molecular dynamics simulations to generate binding models that were tested experiment...
متن کامل